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Abstract
We study the superfluid properties of short-coherence-length superconductors
described by the extended Hubbard model with on-site repulsive and inter-
site attractive interaction. We have analysed the superfluid stiffness and ther-
modynamic properties of the model versus electron concentration and pairing
interaction on a two-dimensional square lattice with nearest- and next-nearest-
neighbour hopping. The effects of phase fluctuations on anisotropic super-
conductivity of extended s- and dx2−y2 -wave type were examined within the
Kosterlitz–Thouless (KT) scenario. The KT critical temperatures were deter-
mined and compared with those from the BCS–Hartree–Fock approximation.
The Uemura-type plots, i.e. the critical temperature versus zero-temperature
phase stiffness, were obtained for both extended s- and d-wave pairings. The
states with mixed (s ∗ and dx2−y2 ) symmetry, and in particular the time-reversal
breaking state of s + id symmetry, were analysed and the phase diagrams taking
into account these states are presented. We also briefly discuss the crossover
from BCS to local pair superconductivity for the dx2−y2 -wave pairing. A com-
parison of the theoretical results with the experimental data, in particular those
of Tc versus λ−2(0), for high-Tc cuprate superconductors is made.

1. Introduction

Experimental results show that the cuprate high-temperature superconductors (HTSs)
are characterized by strong spatial anisotropy. The question of the symmetry of the
superconducting order parameter has not been finally solved yet. Several experiments have
given contrasting results regarding the s- versus d-wave symmetry in the hole doped cuprate
HTS; however the pairing symmetry is characterized by the predominantly dx2−y2 -wave
component [1–7]. Moreover, due to a short coherence length and low superfluid density
in the underdoped regime, one also expects that the phase fluctuations are important and can
have a profound effect on the HTS properties [8–11].
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In this paper we study the superconducting properties of systems described by the extended
Hubbard Hamiltonian:

H =
∑
i, j,σ

(ti j − µδi j)c
†
iσ c jσ + U

∑
i

ni↑ni↓ + 1
2

∑
i, j,σ,σ ′

Wi j niσ n jσ ′, (1)

where ti j is the transfer integral, U is the on-site and Wi j is the intersite interaction, µ

is the chemical potential and niσ = c†
iσ ciσ . The number of electrons per lattice site is

given by n = N−1 ∑
i,σ 〈niσ 〉. We will analyse the case of W < 0, i.e. the intersite

nearest-neighbour (nn) attraction, on a two-dimensional square lattice. This is one of the
simplest models of a short-coherence-length superconductor which allows us to consider
the case of dx2−y2 as well as the s-wave symmetry of the gap [12, 13]. It has been widely
employed as a phenomenological model in several studies of anisotropic superconductivity
in cuprate HTSs [8, 14–32]. The superconductivity and magnetism in the extended Hubbard
model (1) with on-site repulsion and intersite attractive interaction have been studied in both
the weak-(U < 2zt) and the strong-(U � t) correlation limits, within various approximation
schemes [8, 12–18, 20–22, 26, 27, 30, 31]. The model can be considered as a simple one of
oxygen holes pairing in high-Tc cuprates due to a polaronic mechanism [8, 12] or due to purely
electronic mechanisms [8, 12] or as an effective model of quasiparticle (antiferromagnetic
spin polaron) pairing [19, 23]. An effective near-neighbour attraction has also been used in the
study of superconductivity in cuprate HTSs based on the quasiparticle structure derived from
the multi-band models [32]. Additionally, within the model (1) inhomogeneous (striped) spin
density waves (SDWs) and d-wave superconductivity [30] were obtained and the quasiparticle
spectra at the vortex core were studied by using the Bogoliubov–DeGennes equations [31].

The main purpose of this work is to explore further the superconducting properties of the
model (1) and analyse the effects of phase fluctuations. As in [12] our study is concerned
with a two-dimensional square lattice employing the broken symmetry Hartree–Fock (HF)
scheme and considering arbitrary electron density. The phase fluctuation effects are studied
within the Kosterlitz–Thouless (KT) scenario. The layout of this paper is as follows. In
section 2 we present the formalism and basic equations. The results and detailed discussion
of the superfluid density and the critical temperatures are given in section 3.1. The Uemura
plots derived within the BCS and KT theory for extended s-(s ∗-) and dx2−y2 -wave pairings
are analysed in section 3.2. This subsection also contains a brief discussion of crossover from
BCS to the preformed pair limit in the case of d-wave symmetry. The results for the gap ratio,
coherence lengths and the Ginzburg–Landau (GL) ratio are given in section 3.3. The solutions
with mixed s + id symmetry, phase diagrams including s ∗, d and s∗ + id states and Uemura
plots with the symmetry mixing are examined in section 3.4. Conclusions and a comparison
with experimental data for cuprate HTSs are given in section 4.

2. Formalism

The self-consistent equations for the superconducting order parameter and the free energy
are obtained in the broken symmetry HF–BCS approximation for the Hamiltonian (1) [12],
appropriate for the case of weak to intermediate on-site repulsion. For the singlet pairing one
obtains the gap equation:

�k = 1

N

∑
q

(−U − Wk−q)�q Fq, (2)

Fq = 1

2Eq

tanh

(
β Eq

2

)
, (3)



Superfluid properties of the extended Hubbard model with intersite electron pairing 9633

where Wk is the Fourier transform of Wi j and β = 1/kB T . The quasiparticle energy

is given by Eq =
√

ε̄2
q + |�q|2, ε̄q = εq − µ̄, with the electron dispersion of εq =

−2t (cos(qx a) + cos(qya)) − 4t2 cos(qxa) cos(qya) for the next-nearest-neighbour (nnn)
hopping1 (t2), µ̄ = µ − n(U/2 + 4W ). In what follows we consider the nn attraction and the
singlet pairing for which the gap function takes the following form for the d = 2 square lattice:
�k = �0+�γ γk+�ηηk, where γk = 2(cos(kxa)+cos(kya)) and ηk = 2(cos(kxa)−cos(kya)).
The first and second terms refer to the on-site and extended s-wave and the third to the d-wave
pairing. The self-consistent equations have the following form [12]:

�0 = −U	1, �γ = |W |
4

	γ , (4)

for the s-wave, and

�η = |W |
4

	η, (5)

for the d-wave symmetry.
In equations (4), (5) 	1, 	γ , 	η, are defined as follows:

	1 = 1

N

∑
k

�k Fk, (6)

	γ = 1

N

∑
k

�kγk Fk, (7)

	η = 1

N

∑
k

�kηk Fk. (8)

The above equations have to be solved together with the equation determining the chemical
potential µ:

n − 1 = − 2

N

∑
k

ε̄k Fk. (9)

The free energy in the superconducting state is given by

F

N
= 1

4
(U − 2|W |γ0)n

2 + µ̄(n − 1) +
1

N

∑
k

|�k|2
2Ek

tanh(β Ek/2)

− 2

β N

∑
k

ln(2 cosh(β Ek/2)). (10)

The density of states (DOS) is given by N(ω) = 1
N

∑
k(u

2
kδ(ω − Ek) + |vk |2δ(ω + Ek)), u2

k =
(1 + ε̄k/Ek)/2, u2

k + |vk |2 = 1, and the momentum distribution at T = 0 K is nk = |vk |2.
The superfluid stiffness ρs , which is proportional to 1/λ2 (λ−2 = (16πe2/h̄2c2)ρs , λ is the

London penetration depth), can be obtained from the linear response theory [33, 34] through
the relation between the current and the inducing transverse gauge field, and is given by

ρα
s = 1

2N

∑
k

{(
∂εk

∂kα

)2
∂ f (Ek)

∂ Ek

+
1

2

∂2εk

∂k2
α

[
1 − ε̄k

Ek

tanh

(
β Ek

2

)]}
, (11)

where f (Ek) is the Fermi–Dirac distribution function and α = x, y. For the tetragonal system
ρx

s = ρ
y
s = ρs . The HF transition temperature is the one at which the gap amplitude vanishes

and gives the pair-breaking temperature. When the thermal phase fluctuations of the order
1 The effect of the Fock term as well as p-wave pairing are not considered here, see [12, 16].
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parameter are taken into account, the phase transition generally occurs at a temperature lower
than that given by HFA. We assume that in two dimensions this temperature can be determined
within the KT scenario [35] and consequently we have estimated it, for each pairing symmetry,
from the relation for the universal jump of the superfluid stiffness ρs at Tc [35–37]2:

ρs(Tc) = 2

π
kB Tc, (12)

where the superfluid stiffness is evaluated from equation (11). Such a method of evaluating Tc

has been studied in detail for the two-dimensional attractive Hubbard model, where it provided
a valuable estimate for the KT transition temperature [36, 43].

We will also analyse the characteristic lengths in the superconducting state: the GL
coherence length ξGL and the pair correlation length ξ . The GL coherence length (i.e. the spatial
extension of the superconducting order parameter) can be obtained through the relation [38]

ξGL = 	0

2π
√

2λHc

, (13)

where 	0 = hc/2e is the quantum flux, and the thermodynamic critical field Hc can be
calculated from

H 2
c

8π
= Fn − Fs

Nad
, (14)

where Fs is given by equation (10) and Fn by Fs(�k = 0). To determine the pair correlation
length one considers the pair correlation function [39]

g↑↓(r1, r2) = 〈�†
↑(r1)�

†
↓(r2)�↓(r2)�↑(r1)〉 − n2/4. (15)

In the BCS state g↑↓(r1, r2) = |〈�†
↑(r1)�

†
↓(r2〉|2 = |F(r)|2, r = r1 − r2.

The pair correlation length is given by

ξ2 =
∫

g↑↓(r)r2 dr∫
g↑↓(r) dr

. (16)

In the ground state, one gets

ξ2
0 =

1
N

∑
k |∇ϕk |2

1
N

∑
k |ϕk |2

, (17)

where ϕk = �k
2Ek

is the Cooper pair wavefunction. For finite T , ϕk is replaced by Fk =
�k
2Ek

tanh (β Ek/2). ξ is a measure of the pair radius in the condensate and in the n → 0 limit
it gives the bound state radius for the two-electron problem. The condensate density is given
by n0(T ) = (1/N)

∑
k F2

k . It should be noted that n0(T ) and ρs(T ) are different quantities.
By numerical solution of the above equations we have determined the superfluid stiffness

and the critical temperatures and constructed the plots of Tc versus 1/λ2(0) (the Uemura plots)
in the BCS–HFA and KT scenario. We have also evaluated other quantities like the gap
ratio, the coherence length, the pair radius and the GL ratio κ = λ/ξGL for different pairing
symmetries.

3. Results

3.1. Superfluid density and critical temperatures

At first, we analyse the case of nn hopping i.e. t2 = 0. For the d-wave pairing, ρs decreases
linearly with T , in contrast to the s∗-wave pairing, for which the fall in ρs is exponential for
2 This simple way gives us only an upper bound on the actual KT transition (see [36, 37]), since equation (11) does
not include the ρs renormalization due to topological excitations. A systematic theory should involve a mapping onto
an effective X–Y model with renormalized stiffness.
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Figure 1. Critical temperatures versus n for nn hopping with nn attraction |W/4t| = 0.5 and
U/4t = 0.5, 0, −0.25, determined within the HFA and KT schemes. Dashed curves denote T H F

c
and solid curves are for T K T

c .

low T . The intersection of ρs(T ) with the straight line 2
π

T yields the KT transition temperature,
which is of course smaller than the HF temperature (for which ρs = 0).

In figure 1 we present the plot of critical temperatures versus n for the nn hopping and
|W |/4t = 0.5. For small n, the s∗-pairing dominates with a characteristic nonmonotonic
dependence of Tc(n), while the d-wave pairing dominates near half-filling. The repulsive
(attractive) on-site interaction reduces (enhances) Tc for s-wave pairing (figure 1) but has no
effect on the d-wave pairing, at least in the BCS–HF approach.

We notice a strong influence of the phase fluctuations on both the s∗- and d-wave pairing
(for the latter the KT temperatures are even half the HF ones, near n = 1, for this value of
intersite attraction). Starting from the normal phase, with decreasing temperature, at T H F

c
the gap in the energy spectrum opens up and rises with lowering T , but there is no real
phase transition to a superconducting state yet. Only at the KT temperature, where the phase
coherence sets in, does the transition occur to a phase with bound vortex–antivortex pairs.
Between the HF temperature and the KT temperature we have a specific phase in which pairs
(of s- or d-waves) are incoherent but the fermionic spectrum has a gap, which can vanish at the
nodal points for the pure dx2−y2 symmetry. This phase could be a finite temperature analogue of
the recently discussed ‘nodal liquid’ phase in quantum disordered d-wave superconductors [40].

We shall now turn to the case of nnn hopping,and the results are displayed in figures 2, 3, 6–
9 and 11–13. We have analysed the concentration dependence of ρs(T ) and Tc for different t2
values: t2 = −0.45t (which corresponds to Y123 materials), t2 = −0.3t (Bi2212 materials)
and t2 = −0.16t (La214 materials). In figure 2 we show the normalized superfluid density
(which also yields λ2(0)/λ2(T )) versus the normalized temperature T/Tc for the d-wave
pairing. We observe a rather weak sensitivity of the normalized penetration depth to the
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0 0.2 0.4 0.6 0.8 1
T/Tc

0

0.2

0.4
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T
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ρ s(

0)

t2=0, n=0.5
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t2=–0.45t,  n=0.7
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Figure 2. Normalized superfluid density (ρs(T )/ρs(0) = λ2(0)/λ2(T )) versus normalized T/Tc

for dx2−y2 symmetry in HFA and |W/4t| = 0.5. The plots are for t2 = 0 and t2/t = −0.45.
For the nnn hopping t2/t = −0.3 the curves show similar dependence linear in T/Tc and lie in
between.

carrier concentration, especially in the low-temperature regime, which is in agreement with
recent experimental studies of the penetration depth in several cuprate HTSs [41]3.

The effect of the nnn hopping on the HF and KT critical temperature appears to be quite
important. Figure 3 shows the plots of Tc versus electron concentration n together with
concentration dependences of the order parameter and superfluid stiffness at T = 0 K. For
t2 �= 0 (e.g. t2 = −0.45t) the d-wave pairing region extends toward lower densities, and the
maxima of the critical temperatures are shifted from n = 1 more strongly for T H F

c than for
T K T

c . For that pairing symmetry, the maximum of T H F
c is controlled by the position of the van

Hove singularity in the DOS and for |t2| < 0.5t the maximum is at µ̄ ≈ 4t2, whereas the T K T
c

is determined by the superfluid stiffness. For the s ∗-wave pairing (and n � 1) the maxima
of both T K T

c and T H F
c are shifted to higher densities and the T H F

c maximum temperature is
higher than for the case of nn hopping. The important point is, as illustrated by the inset in
figure 3, that there is a region of densities where ρs(0) is smaller than the order parameter, in
clear contrast to the conventional weak-coupling superconductors where ρs(0) > �(0). This
separation of the scales occurs, for sufficiently strong attraction, most easily in the low-density
regime for s ∗-wave pairing. An increase in the nnn hopping amplitude |t2| implies a similar
situation for dx2−y2 pairing. In general, one observes that if ρs(0) � �(0), then Tc ∼ �(0),
whereas in the opposite limit, i.e. if ρs(0) � �(0), then Tc ∼ ρs(0).

3 In particular, it has been obtained from the muon spin rotation (µSR) experiments that the normalized superfluid
density is practically doping independent in the range of 0 < T/Tc < 0.35 and λ2(0)/λ2(T ) ≈ 1 − αT/Tc, with
α = 0.6 for Y124 and α = 0.5 for Y123 materials [41]. Theoretical results from figure 2, for t2/t = −0.45, in the
same range of T/Tc yield α = 0.67 and λ2(0)/λ2(T ) is also independent of concentration n.
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Figure 3. Critical temperatures versus electron concentration for |W/4t| = 0.5, U = 0 and
t2/t = −0.45, in HFA and KT schemes. The inset shows concentration dependences of the order
parameter � (empty symbols) and superfluid stiffness ρs (full symbols) in the ground state.

3.2. Uemura plots

Next, we discuss the Uemura [42]-type plots, i.e. the plots of Tc versus 1/λ2(0). We have
found that for the nn hopping and with the controlling variable n, only the curves for extended
s-wave pairing have a shape similar to the experimental Uemura plots [42] (see figure 4). For
the s∗-wave pairing and small n, the points determined within KT scenario follow the line
πρs(0)/2, and with increasing density the curves bend below this line, which is an upper
bound on the phase ordering temperature. We also see that in the HFA the Uemura scaling
Tc ∝ 1/λ2(0) is not obeyed.

We notice, however, that the Uemura-type plots can be obtained for the s ∗- and d-wave
symmetry, in the KT scenario, with growing intersite attraction [16] for nn hopping and fixed
n, and they are very similar to the crossover plot of Tc versus the coupling strength for the
two-dimensional attractive Hubbard model [43].

With the nnn hopping included, we observe that t2 has a dramatic impact on the behaviour
of the plots for d-wave pairing (figure 5). The shape of the plot for d-wave pairing and
t2 = −0.45t is quite different from that for the nn hopping in figure 4. In particular, for larger
values of t2 (close to t2 ≈ −t/2) we find a characteristic shape of Uemura plot for d-wave
pairing, as we obtained in the case of extended s-wave pairing and nn hopping. We see in
figure 5 that for large n, which corresponds to a weak coupling, T K T

c and T H F
c are close to

each other, but they become strongly different with lowering density.
We should also point out that when the points collapse on the line πρs(0)/2, which

happens in the dilute limit and for an appropriate strength of the intersite attraction, then
the transition to the state with preformed pairs can take place, with the nodeless gap to
single-particle excitations for a pure d-wave pairing. This density driven crossover from
BCS superconductivity to Bose–Einstein condensation (BEC) of d-wave pairs is very different
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Figure 4. Uemura-type plots (the critical temperature versus superfluid stiffness at T = 0) for nn
hopping and |W/4t| = 0.5. The controlling parameter is electron concentration n. The increasing
ρs (0) corresponds to an increase in n. Dashed curves with empty symbols denote T H F

c ; solid
curves with filled symbols are for T K T

c . The curve πρs (0)/2 is an upper bound on the phase
ordering temperature.

from that of s-wave symmetry [16]. Moreover, in the presence of the nnn hopping the local
d-wave pairs can have high mobility [45]. In figure 6 we show the behaviour of the DOS in this
density driven crossover. In the BCS regime (figure 6(b)) the DOS exhibits a typical d-wave
shape with the order parameter amplitude (�max(0) = 4�η(0)) determined by the position of
the logarithmic singularity. For n in the LP regime (figure 6(a)), the true gap to single-particle
excitations opens and is similar to that for s-wave pairing. In such a case, the gap value is
given by 2|µ̄ − ε0|, and this gap is nodeless in contrast to the order parameter. Beyond the
crossover regime, the points in figure 5 deviate from the straight Uemura line and the d-wave
order parameter as well as the gap to single-particle excitations has nodes. In figure 5 we also
show the plots for s ∗-wave pairing, which competes with the d-wave state [12, 20, 23]. The
increasing on-site repulsion (U ) and the nnn repulsion (W2) will further destabilize this pairing
and restrict a possible region of coexistence of s and d solutions4.

We have also studied the case of |t2/t| > 0.5, for which d-wave pairing takes place even
for low density and there is no threshold value of nn attraction to bind the d-wave local pair (LP)
in the n → 0 limit. For such values of t2, the s∗-wave pairing can occur for high n only, and for
an appropriate strength of nn attraction [12]. In this case, the Uemura scaling for the d-wave
symmetry is obeyed in an extended range of concentrations, due to a separation of the scales for
the pairing and the phase coherence. As an example, in figure 7 we show the Uemura plots for
d-wave pairing and t2/t = −1. For low ρs(0) (low n) the plots resemble those for the extended

4 In the low-density limit the stability of s-wave pairing in two dimensions can be determined from the conditions
for the existence of the two-body bound state in an empty lattice [25, 45, 46]. For example, for U/4t = 1 and
|W |/4t = 0.5, s-wave bound state cannot exist if W2/4t � 0.6425, and the pairing will be suppressed in a dilute
limit.
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Figure 5. Uemura-type plots for nnn hopping t2 = −0.45t and |W/4t| = 0.5. The controlling
parameter is the electron concentration n varying from 0 to 1.5. The dashed curve with empty
symbols denotes T H F

c ; the solid curve with filled symbols is for T K T
c . The increasing ρs (0)

corresponds to an increase in n (n ∈ [0, 1.45]). The curve πρs (0)/2 is an upper bound on the
phase ordering temperature. The combined effect of the on-site repulsion (U/4t = 1) and the nnn
Coulomb repulsion (W2/4t = 0.3) on Tc for s∗ pairing is shown by open diamonds (HF) and solid
diamonds (KT).
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Figure 6. Ground state superconducting DOS versusω illustrating the density driven crossover from
BCS to LP in the case of d-wave pairing for t2/t = −0.45. (a) n = 0.05 is for the dx2−y2 LP case.
The superconducting parameters are �η(0)/4t = 0.0325, µ̄/4t = −0.5802, ρs(0)/4t = 0.003 78.
(b) n = 0.5 corresponds to the BCS case. The superconducting parameters are �η (0)/4t = 0.0625,
µ̄/4t = −0.4563, ρs (0)/4t = 0.0256. The dotted curve shows the DOS in the normal state.
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Figure 7. Uemura-type plots for the nnn hopping t2/t = −1, |W/4t| = 0.5 and 0.75. The
controlling parameter is the electron concentration n (n ∈ [0, 1.35] for |W/4t| = 0.5 and
n ∈ [0, 1.4] for |W/4t| = 0.75). Convention as in figure 5.
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|W |/4t = 0.5, U = 0 and t2 = −0.45t .

s-wave pairing in figure 4. Actually, in both cases the Uemura scaling occurs in the proximity
to the band insulator, which in our case is the n = 0 point. This further substantiates our
finding that for both s ∗- and d-wave pairing, the Uemura scaling occurs if phase fluctuations
are included. An interesting point regarding figure 7 is, that in the low-concentration regime,
for any |t2/t| > 0.5, the d-wave gap is nodeless and the analysis of the momentum distribution
reveals that the pairing is local and concentrated around the points (±π, 0), (0,±π). This is
a new, nodeless, d-wave superconducting phase. The nodal points and associated behaviour
linear in T of the superfluid density for low T occur for higher n only (see also figure 10).
Note that the bottom of the band for |t2/t| > 0.5 is at επ,0 = 4t2. Thus, the crossover from the
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Figure 9. Ginzburg–Landau coherence length (filled symbols) in the superconducting ground state
versus concentration n for s∗- and dx2−y2 -wave pairing symmetries. |W |/4t = 0.5, U = 0 and
t2 = 0; the pair radius ξ0 is shown by empty symbols. For d-wave symmetry we evaluated ξ for
kB T/4t = 10−5. The inset shows the Ginzburg–Landau ratio versus n (κ0 = h̄c/2e

√
πa4t).

BCS limit to local d-wave pairs can occur for low n when µ̄ falls below επ,0. However, due
to the existence of the nodeless BCS-type d-wave state this changeover is different from the
case of |t2| < 0.5t , for which we have d-wave pairing with four nodal points, which leads to
power law temperature behaviour of the superfluid density and has important consequences for
the spectral properties. This BCS–BEC crossover is smooth in contrast to the case of d-wave
pairing with nodal points, for which the crossover is continuous but not smooth [15, 16, 44].

The above results concerning the Uemura plots, for both nn and nnn hopping, show a clear
separation of the energy scales for intersite pair formation and for the phase coherence in the
low-concentration (underdoped) regime (or in the strong coupling)5, as previously deduced
for the s-wave pairing [13, 48, 49] or phenomenologically [13, 42, 47].

3.3. Gap ratio and coherence lengths

The phase fluctuations also modify the mutual stability of s ∗- and d-wave pairings and yield
enhancement of the gap ratio 2�/kB Tc [16]. In figure 8 we show the gap ratios versus
concentration n for the case of nnn hopping6. It is interesting to observe that the gap ratio
for the d-wave pairing (determined by the gap maximum, Eg = 2�max (0)(�max = 4�η))
versus n takes a nearly constant value around four to five in the BCS–HF scheme, but in the
KT scenario it strongly increases with lowering n and can readily achieve very large values.

The behaviour of the GL coherence length and the pair radius7 as well as the GL ratio
κ = λ/ξGL is shown in figure 9. These two lengths, being of the order of a few lattice
5 This separation of the energy scales for pairing and phase coherence is also supported by the analysis of concentration
dependences of the gap and superfluid density at T = 0 K [16].
6 In figure 8 changes in the gap definition when the system passes to the LP limit, which can happen for low n, and/or
for sufficiently strong attraction, are not included.
7 In the case of d-wave symmetry with the nodal quasiparticle spectrum, for evaluation of ξ on the two-dimensional
square lattice we have used equation (17) with ϕk replaced by Fk = �k

2Ek
tanh(

Ek
2kB T ), which is a generalization of the

pair correlation length to finite temperatures.
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Figure 10. Ground state phase diagrams for t2/t = −0.16, −0.45, −0.7 and −1. U = 0. For
|t2/t| < 0.5, a pure d-wave state is characterized by four nodal points. For t2/t = −0.7 and −1, a
pure d-wave state on the left-hand side will be nodeless, but a pure d-wave state on the right-hand
side for t2/t = −0.7 will be characterized by four nodal points. The states s + id and d + is are
equivalent.

spacings in the regions where the superconductivity is most stable, increase with decreasing
order parameter. For the s ∗-wave pairing, ξGL and the pair radius are close to each other;
however with n → 0, the pair radius slightly increases (to reach the size of the bound state),
thus reflecting the transition to the LP regime (figure 9). In the case of the nnn hopping, ξGL

is nearly constant, in a more extended range of concentrations for the d-wave pairing. The
GL ratio shows a strong increase with decreasing concentration, particularly in the region
where the separation of scales for pairing and for phase coherence occurs. Such behaviour is
characteristic for extreme type II superconductors.

3.4. States with mixed symmetry

The comparably high critical temperatures of s ∗- and d-wave pairing suggest that there may
exist a phase with a mixed symmetry [20, 21]. The general form of the gap in the mixed
symmetry state is �k = �s

k + eiα�d
k with a relative phase α (where �s

k = �0 + γk�γ and
�d

k = ηk�η). It can be shown that the states with α = 0, π (s ± d) or α = π
2 , 3π

2 (s ± id) are
allowed. In our case, for a tetragonal lattice, the calculations of the free energy indicate that



Superfluid properties of the extended Hubbard model with intersite electron pairing 9643

0 0.5 1 1.5 2
n

0

0.02

0.04

0.06

0.08

0.1

0.12

k B
T

/4
t

d–wave  HF
s

*
–wave HF

d–wave KT
s

*
–wave KT

 s+id KT
d –>s+id
s –>s+id

N

dx –
2

y
2

s+id

sx
2
+y

2

sx
2
+y

2

t2=–0.45t

|W|/4t=0.5

TTCP

(b)

–0.8 –0.4 0 0.4 0.8 1.2
µm/4t

0

0.02

0.04

0.06

0.08

0.1

k B
T

/4
t

|W|/4t=0.5

t2=–0.45t

sx
2

+y
2

dx
2

–y
2

s+id

N
s x2 +

y2

QCP

TTCP

(a)

Figure 11. Phase diagrams for the nnn hopping t2/t = −0.45, |W/4t| = 0.5, U = 0. Panel (a)
shows the (T − µ̄) phase diagram (µm = µ̄), while panel (b) the (T –n) phase diagram. Empty
symbols denote T H F

c , filled symbols T K T
c . N denotes the normal phase. In the BCS–HFA the

four second order lines meet at the tetracritical point (TTCP). The quantum critical point (QCP) at
T = 0 K can separate the band insulator (n = 0) and the s∗-wave state.

state s ± id is more stable than s ± d. This conclusion is in accordance with the analysis based
on the two-dimensional isotropic Fermi liquid with attraction [50].

In the s + id state, �k = �s
k + i�d

k and the quasiparticle energy is given by Ek =√
ε̄2
k + (�s

k)
2 + (�d

k)
2. The equations for the gap amplitudes �0,�γ ,�η, the chemical

potential and the free energy are obtained from equations (4)–(10), with the use of the
replacement �η → i�η.

In figure 10 we present the ground state phase diagrams for various values of the nnn
hopping: (t2/t = −0.16,−0.45,−0.7 and −1) and U = 0. The mixed symmetry states
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(This figure is in colour only in the electronic version)

appear when the intersite attraction |W | is sufficiently large and the regions of pure s ∗- and
d-wave states start to overlap. Even if t2 = 0, the state with s + id mixing can be realized
for large values of |W |. The nnn hopping with |t2| < 0.5t widens the area of overlaying pure
states in the region of small n and narrows it in the region of higher n. The range of pure
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s∗-wave solutions for small n is strongly restricted by the mixed symmetry state (figure 10).
If |t2| > 0.5t , there is a change in the ground state diagrams since the s ∗-wave pairing is
replaced by d-wave pairing for low n, and the d-wave state extends to higher n with growing
|t2|. For |t2| > 0.5t , we have the pure dx2−y2 -wave symmetry state in the dilute limit and the
mixed s + id (d + is) symmetry is preferred for intermediate concentrations (figure 10). For
t2 �= 0 the phase diagrams lose the n → 2 − n (particle–hole) symmetry; nevertheless, a more
general symmetry t2/t → −t2/t , n → 2 − n, holds [12].

Figure 11 presents the (T − µ̄) and (T − n) phase diagrams for the case of t2 = −0.45t ,
(|W/4t| = 0.5 and U = 0), which show s∗, d and s + id phases. In the mixed symmetry state
the order parameter has two components: �η and �γ , which, in general, vanish at different
temperatures. When the temperature increases the system changes from the mixed s + id
symmetry state to the superconducting state with pure symmetry, and finally to the normal
state. In the BCS–HFA scheme these transitions are continuous and there are four critical lines
which meet at the tetracritical point [51]. We also note an appearance of the quantum critical
point on the (T − µ̄) phase diagrams. The position of the QCP is given by the value of the
chemical potential µ̄/4t = −1 − t2/t − Eb/8t , where Eb is the pair binding energy in the
two-body problem for an empty lattice. This QCP separates the superconducting phase and
the band insulator phase.

In the s + id state, the superfluid stiffness ρs(T ) is given by equation (11) together with

the quasiparticle energy Ek =
√

ε̄2
k + (�γ γk)2 + (�ηηk)2 and equations for the amplitudes

�γ ,�η. This ρs(T ) is subsequently used in equation (12) to determine T K T
c . The calculated

values of ρs appear to be slightly higher than those for the state with the pure symmetry,
therefore the values of T K T

c determined by using equation (12) are a bit higher than those
for the pure ordering, in the region of the mixed symmetry. The KT transition temperatures
are, however, much lower than those obtained in the BCS–HFA scheme (figure 11). As we
mentioned earlier for low n the stability range of pure s∗ ordering is narrowed by the mixed
symmetry state. In figure 11(b), the region of pure s ∗ solution extends from n = 0 to 0.1 at
T = 0. Then for higher n the area of s + id mixing arises. When n still grows the pure d-wave
state occurs (for 0.75 < n < 1.45 at T = 0). Finally, for high n the second branch of the pure
s∗ state appears (figure 11).

The above-described changes caused by the symmetry mixing modify the Uemura-type
plot as shown in figure 12. In agreement with figure 11, for low n, because of the s + id
mixing the T K T

c plot is closer to the universal line π
2 ρs(0). With a further increase of n the

pure d-wave state appears and for n > 1.45 ρs(0) descends and reaches the value 0 for n = 2.
In this latter concentration range the second branch of the s ∗-wave solution occurs and this
branch is presented in the plot. The left s ∗-wave branch (for T K T

c ) shown in figure 11 is
not visible in figure 12 because it is very small. The Uemura plot reported in figure 12 has
a characteristic shape of a fly’s wing [52]. We note that even with the s–d mixing taken into
account, the return of Tc with increasing electron concentration, from 0 to 2, in the Uemura
plot is on the s ∗-wave branch. Let us also add that the mixing will change the Uemura plots
for |t2/t| > 0.5 (figure 7). In such a case, however, the state with s + id symmetry will occur
for higher n (compare figure 10) and will not influence the universal scaling in a dilute limit.
The return will be on the s∗-wave symmetry branch.

4. Conclusions

In summary, we have carried out a study of the superconducting properties of two-dimensional
extended Hubbard model with intersite attraction for nn and nnn hopping. By invoking the
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KT scenario we have systematically analysed the role of phase fluctuations in the anisotropic
pairings in two-dimensional short-coherence-length superconductors. We should point out that
T H F

c is only a characteristic temperature at which the gap amplitude vanishes and which yields
an estimate of the pair formation temperature. The phase transition to the superconducting
state can take place at T K T

c at which the phase coherence sets in.
Our results show for the first time that the Uemura-type plots can be obtained for both

s∗- and d-wave symmetry, in the KT scenario. The reason for the Uemura scaling in systems
with low superfluid density such as HTS is a separation of the energy scales for pairing and
for phase coherence, in accordance with earlier considerations [47–49]. In this paper we have
considered the case of the pure s or d wave as well as the mixed symmetry solutions. Our
analysis shows that the states with mixed s + id symmetry with broken time-reversal can be
realized in a certain range of density and interactions. The d-wave pairing can be further
stabilized by increasing on-site repulsion [12]. Further studies of mixed symmetry solutions
are of interest and can be relevant to understanding the nature of the disordered state and
crossover to LP behaviour.

We should add that within the BCS–HF and KT theories applied in this paper we can
also incorporate the spin fluctuations described by the effective spin exchange of the form∑

i j Ji jSi · S j , S†
i = c†

i↑ci↓, Sz
i = 1

2 (ni↑ − ni↓). J will enter the equations for the extended

s- and d-wave pairing as |W | + 3
2 J [12].

It is of interest to compare our theoretical results for the Uemura plots with the experimental
data obtained from the µSR experiments, collected in [42, 52, 53] (see figure 13). For each
family of cuprate HTSs we have scaled the experimental Tc (being a function of doping) to
T max

c and λ−2(0) to the value attained at T max
c . Analogously, we have scaled the theoretical

results for Tc and ρs(0) given in figure 12. In figure 13 only the KT transition temperatures
for the s + id- and d-wave pairing are shown. Given a number of simplifying assumptions, the
overall agreement is reasonable, especially in the underdoped regime where the s + id solution
is stable; in the optimally doped regime the theory is consistent with the dx2−y2 pairing. The
largest deviations are observed in the overdoped regime.

In the temperature regime T K T
c < Tc < T H F

c , the theory predicts a state with phase
incoherent pairs, which can correspond to a pseudogap state in underdoped cuprates. One
should remark that recent experiments on underdoped Bi2212 and La214, for T > Tc,
indicate a possibility of transient superconductivity [55] and the existence of single-vortex-type
excitations [56], in agreement with the KT scenario.

According to our analysis, the estimated gap ratio Eg/kB T K T
c for the d-wave pairing

can take values close to the experimental ones [54, 57], whereas Eg/kB T H F
c are much lower

(compare figure 8). If we associate the T H F
c , at which the gap closes, with the pseudogap

temperature T ∗, then the calculated ratio Eg/kB T H F
c , being (nearly constant) of order four

to five, is not far from the recently reported ratio Eg/kB T ∗ ≈ 4.3 (BCS d-wave relation),
obtained in scanning tunnelling spectroscopy [57].

Let us finally comment on the phase separation which can compete with superconductivity
in the case of intersite pairing. The long-range Coulomb interaction or Coulomb interaction
extending beyond the nns suppresses the phase separation effects [12]. In this respect, a
particular role can be played by the nnn Coulomb repulsion W2. As mentioned before, this
interaction will also reduce the stability of the s-wave pairing (A1) (by the repulsive sxy

component) but has less effect on the dx2−y2 -wave pairing (B1), since it can only influence
the dxy channel transforming according to the B2 irreducible representation of the C4v point
symmetry group. However, W2 > 0 can also lead to stripe charge ordering competing with
anisotropic superconductivity [16, 29].
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In the present paper, we have used the BCS–HF theory together with the KT scenario to
estimate the influence of phase fluctuations in two dimensions on the superconducting Tc. This
method of estimating Tc in two dimensions, based on the BCS–HF expression for ρs , provides
only an upper bound for the actual KT transition [36, 37, 43]. The fluctuations, both quantum
and thermal, especially in the case of short coherence length, will renormalize ρs and, as a
consequence, Tc determined from the KT relation. These important renormalizations,however,
are expected to result in relatively small changes in the Uemura-type plots, since the slope is
preserved and the bound for the phase ordering temperature is set by (π/2)ρs(0). Nevertheless,
studies going beyond the HF level would be very valuable to assess more completely the
fluctuation effects in these short-coherence-length superconductors.

Another problem concerns an improved treatment of electron correlations and an analysis
of the competition between anisotropic superconductivity, antiferromagnetism and charge
ordered states, which are necessary to fully explore properties of the model analysed in this
paper. A more refined analysis of pairing correlations and the state with phase disordered
pairs, for short-coherence-length anisotropic superconductors, are also challenging issues of
current interest.
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(Ladek Zdrój, Poland) Acta Phys. Polon. B 32 3233

[16] Tobijaszewska B 2001 PhD Thesis UAM Poznań
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